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Abstract

Manual review of antibiotic sensitivity testing results
is an essential component of a microbiology
laboratory's quality control process. Such review is
tedious and prone to human error, however. An
expert system is described that remembers which
susceptibility patterns are considered typical or
atypical by expert reviewers, then uses these to pre-
screen future isolates. It uses a similarity function to
allow matching against this library when two
patterns are close, but not identical. Use of this
system allows more efficient and reliable review of
the laboratory's antibiotic sensitivity testing results.

INTRODUCTION

One important element of the quality control (QC)
process in the microbiology laboratory consists of
daily supervisory review of antibiotic susceptibility
test results. This allows monitoring of result quality
and surveillance of evolving antibiotic
resistance.[1,2] Since different species often have
limited ranges of susceptibility phenotypes, an
organism's antibiogram, or set of susceptibility test
results, may also be used to verify the species
identification.

This manual review relies on a human's ability to
select abnormal patterns from a collection of data. It
follows that its effectiveness depends on the ways in
which abnormal patterns differ from normal ones, the
ability of the reviewer to remember these
distinguishing factors, the quantity of data, and the
time available for review. Unfortunately, the
evolution of antibiotic resistance in bacteria is rapidly
expanding the number of "typical" antimicrobial
susceptibility patterns.[1]

Computers and knowledge-based systems have long
been successfully applied to quality control.[3]
Although it is difficult (if not impossible) to fully
replace human experts for most of these tasks,
knowledge-based systems can improve the ability of
humans to perform quality control by .doing
preliminary screening.[4] Given the continual
pressure on the laboratory to cut costs while
maintaining or improving quality, computer
assistance is becoming increasingly important.
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We have developed a system that acquires knowledge
each day from an expert (the microbiologist) about
which antibiograms are "typical" or "atypical" and
then uses these rules to screen subsequent days'
results. All antibiograms that are not screened out as
typical are then printed out for manual review, along
with the most similar typical and atypical
antibiograms in the knowledge base for comparison.
This allows a more efficient and comprehensive QC
review process, reducing the total time required for
review and increasing the quality of the information
generated. We believe that this tool will enable the
microbiologist to more easily pick out laboratory
errors, unusual isolates, and trends. The system is
currently in daily use, and preliminary evaluation has
been positive. Summative evaluation is in progress.

METHODS

Database construction

A relational database was constructed using 4th
Dimension (ACI US, Inc.) for the Macintosh (Apple
Computer, Cupertino CA). Semantic relationships
between different isolate names were defined
hierarchically so that the computer could recognize
that, for example, an isolate identified as "Gram-
negative rod" might potentially be the same as one
labeled either Escherichia coli or Pseudomonas
aeruginosa, but that these latter two are definitely
distinct.

Data acquisition

A program was written in CCL (Cerner Command
Language, Cerner Corp., Kansas City MO) to extract
all microbiology results verified on the previous day,
along with patient, specimen, and antibiotic therapy
information, from our Cerner laboratory information
system (LIS) into a text file. This program runs
early each morning in batch mode. A second batch
program then transfers the file via FTP to a network
server. A desktop Macintosh 6400 running Cron
(Mark Malson, Hamilton OH) wakes up
automatically at 7:00 am each morning and starts up
a Hypercard (Apple Computer) program. Hypercard
in turn sends a command to Anarchie (Stairways
Shareware, Berkeley CA), to transfer the text file
from the server. Hypercard then launches 4th
Dimension and sends that program a command to
upload the data. Hypercard logs any errors that occur



on the Macintosh end; errors generated by the CCL
program or the initial file transfer are monitored by
Computer Support personnel. Data acquisition
would admittedly be more direct through a Health
Level Seven (HL7) LIS interface, were this available
to us.

Description of data

Each isolate for which susceptibility testing is
performed is typically tested against a panel of
between five and eighteen antibiotics. Selection of
isolates for susceptibility testing is based on a
number of considerations, including body site from
which the culture was obtained, relationship to other
flora, and species. Furthermore, the antibiotic panels
chosen for testing depend on body site and/or species.
Approximately 2/3 of these isolates are tested are by
microdilution on the Vitek system (BioMerieux
Vitek, Hazelwood MO), which gives as output the
minimum inhibitory concentration of each antibiotic
(MIC). Most of the remainder are tested by Kirby-
Bauer (KB) disk diffusion, where the results are the
diameters of the zones of inhibition. KB zone sizes
are roughly inversely proportional to the log of the
MIC for any given species.[S] Some organisms that
cannot be reliably tested by either of these methods
are tested by ETest (AB Biodisk, Solna Sweden), an
agar diffusion method yielding an MIC. Finally, two
tests, beta-lactamase expression and high-level
aminoglycoside testing to predict beta-lactam
synergy, are reported as either positive or negative.

Similarity function

A similarity function was constructed as follows to
compare sets of susceptibility test results: First,
twenty weeks' worth of susceptibility test quality
control (QC) data were entered into a spreadsheet and
examined. This represented weekly testing in which
nine different reference strains of bacteria are tested
with each of the different antibiotic panels, for a total
of 169 * 20 = 3380 individual tests. We took the
standard deviation (S.D.) of the zone sizes or log
MIC's for each individual strain/antibiotic
combination (with n=20), assuming that variability
in any one test with a given strain could be treated as
normally distributed. The standard deviation of each
control value was observed to be roughly linearly
related to the expected value, so linear regression was
employed to estimate the expected standard deviation
for a given patient value. This yielded the equations
sd = 0.041 * (zone size) + 0.22 and sd = -.0061 * (In
MIC) + 0.057.

Given two isolates tested by the same method, we
calculate a distance between their antibiograms by
comparing the individual antibiotic tests. This n-
space is scaled in each dimension by the expected
standard deviation calculated above, allowing a
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Euclidean distance estimate to be calculated. This
estimate assumes that the resistance phenotypes of
both isolates are identical, and that differing results
are due to analytical variation in the laboratory.
Since the number of dimensions involved depends on
how many antibiotic tests the two panels have in
common, the distance is then normalized by dividing
by the square root of the number of antibiotic tests in
common. The resulting distance measure can thus be
considered to be roughly in terms of standard
deviations. (It should be noted however that the
absolute value of the distance between two random
elements of a normally distributed set is not itself
normally distributed.) Beta-lactamase and

-aminoglycoside synergy results were arbitrarily

treated the same as MIC results and assigned the
equivalent to a 4-fold dilution difference if discordant.

For simplicity we neglected S.D. variation among
different species of bacteria and among different
antibiotics. Although controlling for these two
factors would refine the metric somewhat, we felt we
had insufficient data to do this properly. In addition,
previously published work with susceptibility test
panels showed that using Euclidean distance, sum of
distances, skew Euclidean distance (Euclidean distance
on oblique axes based on correlation between
variables), and even the correlation coefficient itself
as a metric all gave similar clustering of bacterial
isolates.[6]

The same twenty weeks' worth of QC data used
previously were analyzed by calculating the distances
between each test panel/bacterial strain combination.
The distances ranged from 0 to 14 between panels
performed on the same strain (0 to 4.1 when MIC
data was deleted), and from 2.6 to >100 on panels
performed on different strains. An arbitrary distance
of 2 was chosen as a cutoff for labeling two panels of
results as similar. We felt that this would provide
reasonable "fuzziness" to the system without risking
misclassifying two different susceptibility patterns as
similar. When applied to the QC data, this cutoff
correctly categorized 68% of the comparisons between
panels performed on the same strain and 100% of the
comparisons between panels performed on different
strains. This improved to 84% of comparisons
between identical strains when the MIC data were
excluded. The wider variation of the MIC results was
due to their highly discontinuous nature, such that
each result has only a few possible values, and >80%
of the results equal either the highest or the lowest
value. We did not feel, however, that this invalidated
the use of our metric on MIC results.

It may have been more statistically rigorous to take
all clinical isolates for which sensitivity testing was
performed over a period of time, perform repeated



testing on these, and then determine the discriminant
ability of setting the metric at different points.
However, this would have expended significant
resources for what we considered would be a small
gain.

Knowledge Acquisition

All of the first day's susceptibility results were
reviewed by a microbiologist, and all of the isolates
were classified as either "typical" or "atypical"
antibiograms. These were then stored with the
appropriate designations in a separate file of the
database. Since then, all results have first been
screened against this library. Any set of results
matching (i.e. distance < 2) a panel stored as
"typical” is so labeled in the daily QC report, while
any matching an "atypical” isolate is flagged and
printed along with the previously stored atypical
pattern. Isolates matching no stored isolates are
labeled as indeterminate, and the closest isolates from
both the typical and atypical libraries are printed for
comparison. Indeterminate patterns are then classified
by a microbiologist as either typical or atypical and
added to the knowledge base. (Atypical patterns are
edited down to include only those antibiotic results
that define the pattern as atypical.) In this way,
knowledge acquisition can occur semi-automatically
as a consequence of daily result review.

For an isolate to match an antibiogram in the
comparison library, three conditions must be met in
addition to the distance between their patterns. First,
the two must be potentially the same species as
determined by their semantic relationship. Second,
the test methods (KB or MIC) must match. Third,
the antibiotics in that isolate's antibiogram must
either include all antibiotics in the comparison
atypical antibiogram or be a subset of the antibiotics
in the comparison typical antibiogram.
Conceptually, this follows from the principle that for
an antibiogram to be considered typical, each
component must also be typical. Conversely, any
atypical component will define the entire pattern as
atypical.

In the first phase of development, results of the daily
review have been entered into the database by the
programmer (B.J.) This process takes approximately
three minutes each day. Once the system has
sufficiently matured, the microbiologists will take
over the task of knowledge entry. Our eventual goal
is for the entire process to be paperless, with
simultaneous interactive result review and knowledge
entry on the computer.

Also during this first phase of development, all
manual review is being performed in duplicate to
ensure the accuracy and reproducibility of the
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classifications being entered into the knowledge base.
This, combined with the fact that a number of
changes have taken place in the laboratory over the
past 6 months, has decreased the frequency of
knowledge acquisition from daily to rather sporadic.
This should become more regular in the future,
however, particularly as the knowledge base grows
and leaves fewer antibiograms needing to be classified
each day. We expect that over the long run, the time
required for result review on the computer will more
than be made up for by the time savings of not
having to review so many susceptibility results each
day. Thus, even if this system did not improve the
quality of daily QC review, which we believe it does,
it will pay for itself in terms of time saved.

System Evaluation

The LIS report which had been used for review of
susceptibility testing was replaced by one which
instead used the 4th Dimension database. This
contained the same data in the same format as the
previous report, except that the label "typical,"
"atypical," or "unclassified" (if there is no match
found in the knowledge base) was added to each
susceptibility panel, as well as the closest
comparison antibiograms and the distances to these.
Each day, one antibiogram is randomly selected to be
labeled "unclassified" regardless of whether it matches
a typical pattern or not (although if it matches an
atypical pattern, it is labeled as such). The reviewers
are blinded to when this occurs. This ensures
periodic review of the typical patterns in the
knowledge base, and creates a means of testing the
reproducibility of the reviewers' decisions. (Each
atypical pattern is brought up for review each time a
match is made to it, obviating the need for further
review of these.)

We are conducting a crossover trial, in which two
microbiologists review the daily susceptibility
reports. One reviews the report as just described, and
the other reviews that report with the screening
information removed. Halfway through the trial, the
two reviewers will trade report types. Addition of
patterns to the knowledge base has been suspended
until the end of the trial, and both reviewers have
available a printout of all of the typical and atypical
patterns in the knowledge base.

Primary outcome measures are time required for daily
review and accuracy in identifying patterns as typical
or atypical, using the consensus decisions of the
microbiologists as the gold standard. In addition,
internal consistency of the classification will be
evaluated by means of the blinded review of typical
patterns above, as well as by performing retrospective
nearest-neighbor analysis on the entire set of observed
antibiograms.



RESULTS

Laboratory volume

Our laboratory, which serves a moderate-sized
academic medical center as well as several outpatient
clinics, processes an average of 149 cultures per day.
From these, sensitivity testing is performed on an
average of 17 isolates per day. The 3064 isolates
tested since January encompass 94 different species,
of which-the 7 most common species represent 78%
of the total test volume.

Database reliability

After 180 days of continuous operation, the database
contains 104 MB of data. The time required to
import each day's results averages 18 minutes, and is
very gradually increasing as the database grows. This
is due to the searching that takes place to prevent
duplicate entries. The automatic file transfer and
import routines have been generally reliable,
although occasional errors occur due to delays in the
LIS batch stream. Such errors occur approximately
twice per month, and daily maintenance is therefore

necessary.

Classification and screening

Up to now, twelve days worth of antibiograms have been

manually reviewed and classified. This has yielded 121
typical patterns and 10 atypical patterns. 13 additional

atypical patterns have been added, not in response to actual

isolates observed in the laboratory, but based on
phenotypes that the microbiologists would like flagged
should they occur. Four atypical patterns were later
reconsidered and deleted, leaving a current total of 19.
These 140 patterns are sufficient to screen out slightly
less than half of new antibiograms. In the most recent

week, for example, there were 113 antibiograms generated
by the laboratory. Of these, our system categorized 46 as

typical, 6 as atypical, and 61 as unclassified.

Data validation

The first 91 antibiograms to be classified were tested
retrospectively against the knowledge base to see if
their classifications would remain the same. There
was a discrepancy in a single case, where a coagulase-
negative Staphylococcus sensitive to penicillin was
classified as typical early in the week, and then later
in the week one with an identical susceptibility
pattern was classified as atypical. The case was
discussed with the microbiologist, who had in fact
changed his mind during that time about whether he
wanted this particular pattern flagged as atypical or
not. In practice, the system will handle such changes
gracefully, since matching to an atypical pattern takes
precedence over matching to a typical one.
Additionally, if any clinical isolate matches both an
atypical and a typical pattern, both of these will be
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printed for comparison, and the microbiologist may
then choose to delete one of the two.

Since then, an additional 15 atypical and 10 typical
classifications have been reviewed. Both microbiologists
agreed with all of the typical classifications. The atypical
patterns fell into three categories: The microbiologists
agreed with 7 of the classifications, all of which involved
uncommon, but not unheard of, resistance patterns that
the microbiologists nonetheless wished brought to their
attention. They disagreed with 7 others which involved
patterns they had previously wanted brought to their
attention, but had since changed their minds. These were
therefore deleted from the library of atypical patterns.
Finally, they disagreed with one classification which
involved an isolate identified at the time as "gram negative
bacillus" and matched atypical patterns for Proteus
mirabilis and Enterobacter species (the isolate turned out
to be neither of these). This represented a false-positive.

DISCUSSION

The QC review system we have described in this
paper can be thought of as a sort of accessory
memory for the microbiologist. As such, it
constitutes a simple yet effective expert system
employing pattern recognition based on supervised
learning and modified nearest neighbor analysis.[7]
Other approaches were considered and rejected based
on the nature of both the problem and the data
involved. For example, although inductive reasoning
systems have proved useful in many situations, they
tend to perform best in situations where the numbers
of inputs and outputs (i.e. observations and
diagnoses) are small compared to the number of
example cases.[4] Our situation was just the

opposite.

Another, more traditional approach to expert systems
has been to parse and symbolically represent the logic
used by the expert to arrive at a diagnosis. This sort
of knowledge acquisition has been described by some
as the most difficult element of expert system
development.[8] We have taken a simpler approach,
acquiring primarily the end decisions of the expert
rather than the logic used to arrive at those decisions.
The user is then free to supplement the knowledge
base with additional rules as he/she deems
appropriate. This limits the system's "intelligence,"
but increases simplicity and speed of knowledge
acquisition.

We could have designed our system to take a more
active role in classifying patterns and automatically
incorporating them into the knowledge base. By
doing so, however, we would have risked losing the
self-knowledge that is essential for reliable expert
system performance.[9] We thought it therefore



desirable that all antibiograms that are not extremely
close to a known classified pattern be manually
reviewed by the microbiologist before being included
in the knowledge base.

All expert systems face the challenge of keeping the
knowledge base up to date.[10] This is particularly
important to our application due to the rate of
evolving antibiotic resistance. By incorporating
knowledge acquisition into the existing QC review
process, we have made it manageable, relevant, and
responsive to the changing epidemiology of the
hospital environment.

Ours is not the first expert system designed to review
microbiology results. An important successful
example is the GermWatcher system at Washington
University, which uses Centers for Disease Control
(CDC) criteria to review culture results and determine
which are likely to represent nosocomial
pathogens.[11] Another group has used cluster
analysis of susceptibility tests to determine the
likelihood that same-species isolates from different
patients are the same strain and thus potentially
represent cross-infection.[6] The uniqueness of our
approach lies in the focus on the microbiology
laboratory itself and the mechanism for continuous
knowledge acquisition and revision.

Some limitations should be acknowledged. First of
all, like all expert systems, ours is limited by the
quality of the knowledge entered into it. The fact that
the expert him/herself is doing the knowledge entry
has some advantages as mentioned above, but may
make the knowledge somewhat less reliable than if it
were entered with the assistance of an actual
knowledge engineer.[8] We believe the system of
blindly rechecking isolates will help control for this,
however. Second, this system is currently only
useful for retrospective review of results. If the
knowledge were available in real time, so that a
technologist entering results could receive immediate
feedback every time an atypical pattern was entered,
additional benefits could be realized. This would
require either redesigning the system to run within
the LIS itself or interfacing with the LIS in a way
that we are presently unable to do. Third, although
the system was initially conceived to take advantage
of results review already taking place, it was later
decided to perform more time-consuming duplicate
review as a means of ensuring the quality of the
knowledge being entered into the system. In the
sense that this provides added validation, this is a
good thing. It does have the unfortunate effect,
however, of making the system less convenient for
the microbiologists,
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and so knowledge acquisition has been less frequent
than the daily capture initially anticipated.

CONCLUSION

We have developed a quality control decision support
tool which incorporates many features of traditional
expert systems, while avoiding some of the
difficulties often associated with them. Further, this
was accomplished with relatively little development
time and effort. We feel that this system will
improve our quality control process while saving
time and money. In addition, it may help the
laboratory to more effectively monitor emerging
resistance in the hospital.
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